\square

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
 Accredited by NAAC with A++ Grade

B.E. III-Semester Main \& Backlog Examinations, Jan./Feb.-2024
 Partial Differential Equations and Numerical Methods

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

b) Use Lagrange's interpolation formula to fit a polynomial to the following data. Hence find $y(-2)$ and $y(4)$.

x	-1	0	2	3
y	-8	3	1	2

14. a) Using Taylor series expansion evaluate the integral of $y^{\prime}-2 y=3 e^{x}, \mathrm{y}(0)$ $=0$ at $\mathrm{x}=0.3$
b) Apply Runge-Kutta method of fourth order to find an approximate value of y when $\mathrm{x}=0.2$, given that $\frac{d y}{d x}=x+y^{2}$ and $\mathrm{y}=1$ when $\mathrm{x}=0$ taking $\mathrm{h}=0.1$.
15. a) Predict y at $x=5$ by fitting a least squares straight line to the following data:

x	2	4	6	8	10	12
y	1.8	1.5	1.4	1.1	1.1	0.9

b) Calculate the correlation coefficient r for the following data:

x	63	50	55	65	55	70	64	70	58	68	52	60
y	87	74	76	90	85	87	92	98	82	91	77	78

16. a) Solve the partial differential equation $p^{2} z^{2}+q^{2}=p^{2} q$
b) Find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the initial temperature is $\sin \frac{\pi x}{2}+3 \sin \frac{5 \pi x}{2}$
17. Answer any two of the following:
a) Find $f(8)$ from the following data using interpolation approach.

$x:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028

b) Determine $y^{\prime}(0), y^{\prime \prime}(0)$ from the following data:

x	0	1	2	3	4	5
y	4	8	15	7	6	2

c) Predict the radiation dose at an altitude of 3000 feet by fitting an exponential curve $y=a e^{b x}$ to the given data:

Altitude x	50	450	780	1200	4400	4800	5300
Dose of radiation y	28	30	32	36	51	58	69

$\begin{array}{llll}4 & 2 & 3 & 1,2,12\end{array}$
$\begin{array}{llll}3 & 2 & 4\end{array}$
$\begin{array}{llll}5 & 2 & 4\end{array}$
$\begin{array}{llll}4 & 2 & 5\end{array}$
$\begin{array}{llll}4 & 1 & 5 & 1,2,12\end{array}$
$\begin{array}{llll}4 & 2 & 1\end{array}$
$\begin{array}{llll}4 & 4 & 2\end{array}$
$\begin{array}{llll}4 & 4 & 3\end{array}$
$\begin{array}{llll}4 & 1 & 4\end{array}$
$\begin{array}{llll}4 & 2 & 5 & 1,2,12\end{array}$

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level - 2	40%
iii)	Blooms Taxonomy Level - $3 \& 4$	40%

