Hall Ticket Number:

Code No. : 13463 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. III-Semester Main & Backlog Examinations, Jan./Feb.-2024

Partial Differential Equations and Numerical Methods

(E.C.E.)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question		M	L	CO	РО
1.	Form the partial differential equation by eliminating 'a' and $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	'b' from $2z =$	2	2	1	1,2,12
2.	Solve the partial differential equation $p + q = pq$	Children by Star 1	2	2	1	1,2,12
3.	Solve the partial differential equation $py^3 + qx^2 = 0$ by separation of variables	the method of	2	2	2	1,2,12
4.	Write (i) One-Dimensional Wave Equation (ii) One-Dim Equation	nensional Heat	2	1	2	1,2,12
5.	Evaluate $\Delta^n(e^x)$ interval of differencing being unity.		2	4	3	1,2,12
6.	Prove that $y_3 = y_2 + \Delta y_1 + \Delta^2 y_0 + \Delta^3 y_0$		2	3	3	1,2,12
7.	Write Newton's forward difference formulae of y' and y'' at =	<i>x</i> ₀ .	2	1	4	1,2,12
8.	Using Euler's method find an approximate value of 'y' corresp given that $\frac{dy}{dx} = x + y$ and y=1 when x=0 (h=0.2)	ponding to x=1,	2	2	4	1,2,12
9.	Write normal equations of fitting of a parabola by the method of	f Least Squares.	2	1	5	1,2,12
10.	If n=6, $\sum x=34$, $\sum x^2=248$, $\sum y=90$, $\sum y^2=1446$ and $\sum x y=582$ to coefficient of correlation.	then find the	2	1	5	1,2,12
	Part-B $(5 \times 8 = 40 \text{ Marks})$	erwahtel administration				
11. a)	Form the partial differential equation from $F(x^2 + y^2 + z^2, z^2)$	-2xy)=0	4	4	1	1,2,12
b)	Solve the partial differential equation $(x^2 - y^2 - z^2)p + 2xyq$	= 2xz	4	3	1	1,2,12
12. a)	rest in its equilibrium position. If it is set vibrating by giving	g to each of its	4	4	2	1,2,12
	points an initial velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0.03 \sin x - 0.04 \sin 3x$.	Then find the				
	displacement $y(x, t)$ at any point of the string at any time t.					
b)	Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 2$ $u(x, 0) = 6e^{-3x}$	$2\frac{\partial u}{\partial t} + u$ where	4	4	2	1,2,12
13. a)	Compute (a) $y(9)$ and (b) $y(17)$ from the following data:	eta contra contra s	4	4	3	1,2,12
	x 8 10 12 14 16 18	line and a line and				
	y 10 19 32.5 54 89.5 15.4					

F. 30

	b)	Use I Henc	-		-		-		rmu	la to	fit a p	oolyno	omia	l to th	ne fol	lowi	ng data.	4	2	3	1,2,1
		Tiene	C II	nu ,	y(2) and	u y(+).									S - Tester	5			
								1	x -	1 0	2	3						G beiry			
									y -	8 3	1	2									
14.	a)	Using = 0 a				ries	expa	nsion	eval	uate 1	he in	tegral	of y	<i>י</i> ′ –	2y =	= 3e	<i>x</i> , y(0)	3	2	4	1,2,1
	b)	Appl	v R	uns	ge-K	utta	meth	od of	four	rth or	der to	o find	an a	ppro	ximat	te va	lue of y	5	2	4	1,2,1
1.5		when x=0.2, given that $\frac{dy}{dx} = x + y^2$ and y=1 when x=0 taking h=0.1.														1	2	5	121		
15. a														uala.	4	2	5	1,2,1			
							X	2	4	6	8	10	12	_							
		e					У	1.8	1.5	1.4	1.1	1.1	0.9					0.000000			
	b)	Calcu	ulat	e th	ne co	rrela	tion	coeffic	cient	r for	the fo	ollow	ing d	ata:				4	1	5	1,2,1
																		anita)			
				x	63	50	55	65	55	70	64	70	58	68	52	60		is cond			
				у	87	74	76	90	85	87	92	98	82	91	77	78					
16.	a)	Solv	a th		1			ial equ										4	2	h olee 1	1,2,
10.	Í	2.						-		-					. at			A		1	
	b)				-									-		o and	d lateral	4	4	2	1,2,
		surra	ce i	insu	nate	unt	ne m	itial te	mpe	ratur	2 18 51	2	T 33	2	_						
7.		Ansv	ver	any	two	oft	he fo	llowin	g:									ing weeks			
	a)	Find f (8) from the following data using interpolation approach.												4	4	3	1,2,1				
						х	: 4	5		7	10	11		13				1. 198 a.a.			
					F	f(x)	: 4	8 10)0	294	900) 12	210	202	8						
		D			L						1										
	b)	Determine $y'(0), y''(0)$ from the following data:														4	1	4	1,2,1		
		X	0	1	2	3	4 4	5										n n na h			
		У	4	8	15	7	6 2	2										r shairt i			
c)		Predict the radiation dose at an altitude of 3000 feet by fitting an exponential												onential	4	2	5	1,2,1			
		curve $y = ae^{bx}$ to the given data:												ះចុង ហើលទ			с. С				
		Alti	itud	e x			50	450	7	80 1	200	440	0 4	800	5300	0		. aqta r			
						ion y	28	30	32		36	51	5	10 K 10	69			1.1.1.1.1.1			

:: 2 ::

250

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
